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Improving the Top mass measurement in L+J by
using the 3 best combinations
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Abstract

The BLUE method is applicable to improve the precision in the Top mass
measurement, whenever the mass can be reconstructed in a number of different
ways for each candidate event. We apply this method to a pretag pseudo-data
sample in the lepton + jet channel using the classic Template Method. Currently,
this method uses only the mass value returned by the most likely jet-to-parton
association (out of 24). In this note we exploit the mass information returned
by the three best combinations. We find that the statistical error is improved by
about 10%.
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2 1 INTRODUCTION

1 Introduction

Getting a mass value from a Top event in the lepton + jet channel implies to chose
among 24 possible reconstructions of the event. Candidates are selected to have at
least 4 jets over the Et > 15 GeV threshold, one lepton over 20 GeV in pT and
MET> 20 GeV .

In general, the possible permutations of 4 jets are 4! = 24, but since if we exchange
the two light jets attributed to the W the mass value does not change, the combinations
returning different masses are only 12. On the other hand, the conservation equation
determine the squared longitudinal neutrino momentum, and the ambiguity of the 2
possible values of this component of the neutrino momentum increases again to 24 the
number of possible reconstructions. Often this ambiguity does not impact appreciably
the reconstructed Top mass, and effectively amounts to doubling the same solution.

The event fitting procedure used minimizes a χ2 quantity depending on a number
of kinematic variables. The returned mass is, for each combination of each event, the
mreco for which the χ2 value, as reported in equation 1 is minimum.
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The standard procedure, when using the Template Method, is to order the 24
combinations by increasing χ2s and to choose the reconstruction associated with the
lowest χ2 value. The Mtop returned by this combination is the reconstructed Top mass.

With MC simulations, we can count how many times we expect this choice to be
the correct one. To do that, we first assume that we are able to correctly match the jets
to the partons, so that the correct 4 leading jets are selected. Under this assumption
which is correct about 54% of times, although the combination associated with the
lowest χ2 has the best chance to be the correct one, this happens only in about 50% of
the times. In the other 50% the correct combination has a poorer χ2 with a decresing
probability of being the right one with increasing χ2 rank (see Figure 1).

Whenever the first combination is not the correct one, a not optimal mass value
is entered into the spectrum, providing a ”combinatorial background”. Our target to
reduce this type of background.

The idea of the present study (see also [6] and [4]), is to recover in part the mass
information contained in the combinations beyond the first χ2 one. One could consider
making use of all of them, but the mathematical and computing effort whould probably
not be justified given the very low probability of the large χ2 combinations of being the
correct one (see figure 1). We chose to include the 3 best combinations in the study,
as a reasonable compromise.
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Figure 1: The plot shows, for the Herwig MC simulation with Mtop = 175 GeV and
χ2 < 9, how many times the χ2 rank indicated horizontally corresponds to the correct
combination. The plot is related only to the Fitter, in the sense that it does not describe
the efficiency in matching correctly jets and partons. After assuming this efficiency to
be one (it is instead about 54%), we notice that bout 50% of times, the first reconstruc-
tion is correct. The (2n + 2)th bins are less populated than the (2n + 1)th ones because
they are often discarded to avoid double counting. This happens when the 2nd degree
equation for the neutrino longitudinal momentum determines one single mass value
providing a multiplicity 2 solution. We reject the second solution whenever it differs
less than 100 MeV from the first one.

2 Montecarlo samples

We applied BLUE to a MC pretag sample of tt̄ events with 4 or more jets, after applying
a χ2 < 9 cut. The pseudodata simulate the first 760 pb−1 of CDF data.

2.1 Expected number of signal and BG events

We are going to estimate the number of BG and signal events in our pretag sample
starting from the BG composition of the b-tagged sample. This was estimated from
an integrated luminosity of 695 pb−1 of so-called goodsilicon events. The observed ≥ 1
tag candidates, after requiring 4 or more jets, are Ntot = 468. By applying the χ2 < 9
cut efficiency we find in this data founding a total of 446 Top candidates. We will
correct a posteriori the estimated BG numbers by the factor 1.0935 to normalize to
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our 760 pb−1 statistics. The estimated background rates in the b-tagged sample are
used for the calculation of each background contribution in the pretag sample. This is
done by making use of the tag efficiency.

In order to be able to build the pseudodata mass spectrum, we need to estimate
how many of the Ntot candidates are expected to be signals and how many BG.

Ntot = Ntt̄ + NBG (2)

Since we deal with tagged sample, we can write the total number of tagged events
by distinguishing the different contributions. We divide the BGs into two categories:
the absolute backgrounds whose expected values N tag

i,abs are predicted by specific studies
and published in [5], and the W+jet backgrounds for which the expected number is
deduced as a fraction λfakeW

i of the number of the tagged fake-W backgrounds N tag
fakeW .

N tag
tt̄ is the number of tagged signals. According to table 1:

N tag = N tag
tt̄ +

7∑
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N tag
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6∑
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N tag
fakeW,i (3)

The sum indexes are related to the BG contributions considered which are reported
in table 1. We name f = Ntt̄/Ntot the Top fraction and we divide by Ntot in order to
obtain an expression in terms of the efficiencies:
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where εabs
i and εfakeW

i are the tagging efficiencies of the absolute and W-like con-
tributions, λabs

i = Ni/Ntot and λfakeW
i is the i-th fraction of the overall tagged fake-W

sample.
We built then a likelihood function describing the probability to get f ·Ntot tt̄ signals

and we used MINUIT to maximize it, assuming a binomially distributed number of
tagged tt̄ events and gaussian distributed backgrounds.

The likelihood equation is minimized with respect to f , allowing the αi parameters
to vary within 1σ.
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The background processes and the relative indexes which appear in equation 5 are
given in table 1. Indexes from 9 to 16 refer to the tagging efficiencies of processes
having the estimated N tag

abs,i with i = 2...8 and inxexes from 23 to 29 refer to efficiencies

of processes having the estimated λfakeW
i with i = 17...22.
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BG process i

Absolute Non-W (QCD) 2
WW 3
WZ 4
ZZ 5
Z → ττ 6
single top t 7
single top s 8

fake W Wbb, 1B matched 17
Wbb, 2B matched 18
Wcc, 1C matched 19
Wcc, 2C matched 20
Wc 21
W → u, d 22

Table 1: BG processes whose contribution is taken in account by maximizing the like-
lihood giving the ttbar signal fraction as described in the text. The fake W BSs are
indicated together with the number of matched jets from b or c quarks [7].

After normalizing to the 760 pb−1 pretag sample and applying a χ2 < 9 cut (which
efficiency was calculated to be 92.5% from the data sample), we get the estimations
given in table 2 which we use for each PE of this study. The relevant BG contaminations
are also reported as fractions of the combined BG sample.

# events 446
tt̄ signals 235
BGs 211

BG W → L.F. 64.4 %
W → H.F. 14.1 %
QCD 13.7 %
WW/WZ 7.8 %

Table 2: Estimated number of signal and BG events in our PEs, and composition of
the combined background sample. W → L.F. is the process having index 22 in table
1, W → H.F. corresponds to indexes 17,18,19,20,21.

2.2 Templates

In order to evaluate the statistical improvement given by the BLUE method applied to
the 3 best reconstructed top masses, we have studied separatly the three combinations
and combined their results.

To do this, we produced a mass and background templates for the first, second
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and the third combination. The background and mass templates generated with each
combination were used to run the likelihood fit of the corresponding pseudodata sample.

The Top mass templates (Herwig) were sampled for the following 10 masses:
150, 155, 160, 165, 170, 175, 180, 185, 190, 195 GeV . Figures 2 and 3 show the three tem-
plates for background and for four selected Top masses.

Figure 2: The three BG (all channels added) templates. The histograms show the MC
events, the fitted continous curvesare the sum of a gaussian and of the integrand of a
gamma function.

3 Quality checks

3.1 Reconstructed mass

We performed the usual quality checks on the three likelihood fits. Figure 4 shows
the output masses versus the input masses. Each point was obtained by running 5000
pseudoexperiments (PEs). The slopes of the fitting lines are respectively 1.009±0.008,
0.992 ± 0.006, 1.007 ± 0.008 for the first, second, third combination. In all cases the
slope is well consistent with the expected value 1.0.

3.2 Pull distributions

The means and widths of the pull distributions have been generated for each mass
template and are reported figure 5. For each mass we studied the reconstruction
quality of the three best combinations.

The dependences of the pull means and widths on the generated Top mass were
fitted to constant lines, the fitted values are reported in table 3.

To estimate the error in the pull values due to the limited number of PEs, we
proceed as follows:

- We choose a reference mass template, at Mtop = 170 GeV .
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Figure 3: Left to right: mass templates for 155, 170, 180, 190 GeV/c2 Top masses
and (top to bottom) first, second and third combination. As expected, the higher the
combination rank is, the wider the template is. This is due to the decreasing fraction
of correct combinations in the samples.

Combination pmean
0 pwidth

0

1 0.013± 0.032 1.008± 0.016
2 0.014± 0.031 0.989± 0.018
3 0.064± 0.030 0.944± 0.016

Table 3: Values of the constant lines fitting the pull means and widths in their variation
with the generated top mass. The means are in good agreement with expectations for
combinations 1 and 2. The fits are not as good for combination 3.

- The single bins of the 170 GeV mass are fluctuated poissonianly 500 times, getting
500 spectra. This is done for combinations 1, 2, 3.

- We analize each variation of the original spectrum using our standard procedure
and generating for each of them 500 pseudoexperiments.
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Figure 4: Output masses versus input masses. All three slopes are consistent with the
unity.

- The results are studied for each fluctuated spectrum. For each variation and each
combination, we plot the pull distribution, and fit them to a gaussian. The mean
is entered into a ”means” histogram and the width to a ”widths” histogram.

- The ”means” and ”widths” histograms are fitted to gaussians giving the estimated
errors on pull mean and pull width.

- For other input masses i having different number of events passing the cuts, we

correct the error by the factor
√

N170/Ni .

4 The BLUE method

The BLUE method (Best Linear Unbiased Estimate) [1] is a statistical procedure for
combining different correlated measurement of the same physical quantity. The corre-
lations are taken into account by means of the error matrix E.

In order to apply BLUE, one computes a set of parameters αi to be used as weights
to linearly combine the single measures xi:

xcombined =
∑

i

xiαi (6)

with the constrain:

∑
i

αi = 1 (7)

The parameters vector αi is calculated in such a way, to minimize the combined
variance given by equation 8, where Eij is the correlation matrix.

σ2
combined =

∑
i

∑
j

Eijαiαj (8)
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Figure 5: The left column shows the pull distribution means and the right column the
pul distribution widths. The rows correspond to the three combinations, in order up
to down. The relatively large error bars are due to the limited statistics. The red
horizontal lines show the constant fits.

In the 3-dimensional case the combined variance is:

σ2
combined =

(
α1 α2 α3

) σ2
1 σ12 σ13

σ12 σ2
2 σ23

σ13 σ23 σ2
3


 α1

α2

α3

 (9)

This method guarantees the combined variance to be not larger than the smallest
variance given in input.

All error matrix elements are needed to minimize the combined variance. Since
the matrix is symmetric, in the 3D case we need to calculate 6 independent matrix
elements.

The 3 off-diagonal elements can be obtained as:

σ2
ij = ρijσiσj (10)



10 5 COMBINATION OF THE RECONSTRUCTED MASSES

ρij =
σPE

ij

σPE
i σPE

j

(11)

To calculate the 6 needed matrix elements, we need to run an large number of
pseudoexperiments in order to study the correlations between the (three) independent
(but correlated) measures we want to combine. The calculation proceeds as follows:

- from the full PE sample, we calculate the correlation factors ρ12, ρ13, ρ23 according
to equation 11.

- for the n-th pseudoexperiment and its parameter set
m1, m2, m3, σ1, σ2, σ3 (or for the data set) we calculate the n-th covariances
σ12, σ13, σ23 obtaining the full error matrix (equation 10). A covariance is calcu-
lated as σN

ij = 1/N
∑

ij(xi − x̄)(yj − ȳ).
- we calculate the n-th set of α1, α2, α3 factors.

5 Combination of the reconstructed masses

We built each PE by extracting randomly 211 events from the BG sample and 235
events from the MC mass templates4 and recorded the best χ2 masses. For the second
and the third χ2 sets, we took the same events, and recorded the second and third
combination masses in order to preserve the correlations.

Figure 6 shows the observed mass correlations in the pretag sample between first/second,
first/third and second/third combinations in the PEs. The correlations were calculated
for the MC sample relative to Mtop = 170 GeV .

As described at the end of section 4, from the correlation factors we can calculate
for each PE the full α set. To check for a possible mass-dependance, we did this
calculation for all the 10 masses used to evaluate the pull distributions: from 150 GeV
to 195 GeV stepping by 5 GeV .

The result is shown in figure 7. On the left the correlation factors are shown. On
the right, we show the α BLUE factors as a function of the generated Top mass. The
α values reported are, for each mass, the mean of the gaussian fit to their distribution.
As an example, we report in figure 8 the alpha factors distribution for the PEs at
Mtop = 170 GeV .

We can now investigate the performances of the BLUE method on this analisys. As
a first step, we show some result for the particular mass of 170 GeV , which lays in the
middle of the mass range chosen and is very close to the latest top mass measurements.

Figure 9 (left side) shows how the 5000 reconstructed masses are distributed in the
first, second, third combination and in the BLUE-combined case. All distributions are
similar to each other, the BLUE combination being very close to the combination one.

4For example, each PE relative to the mass 170 GeV is built with 211 BG events (which do not
depend on the input mass) and 235 events from the 170 GeV mass template.
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Figure 6: Left to right: correlations between first and second, first and third, second and
third combinations of the reconstructed top masses from 5K PEs at Mtop = 170 GeV .
Colors vary with decreasing point density from red at the center to light grey at the
borders.

Figure 7: Left side: correlation factors as a function of the generated top mass. Right
side: α factors as from gaussian fits of their distribution for each generated top mass.
An example of the α distributions for a single top mass is shown in figure 8.

On the right side of the same figure we report the error distributions relative to
the same experiments. This picture is very representative of the BLUE effectiveness:
the BLUE error distribution (blue line) is sharper and peaks to lower masses with
respect to the first combination (solid red). The second and third combinations are
also reported.

To show the sanity of the BLUE-combined masses we report the pull distributions
for the PE relative to Mtop = 170 GeV in figure 10, left side. The BLUE-combined
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Figure 8: Distribution of the 5000 α factors triplets for Mtop = 170 GeV .

Figure 9: Left: Reconstructed mass distribution for 5000 pseudoexperiments. The first
three best χ2 choices are compared together with the Blue-combined reconstructed mass.
Right: same as left, but showing the error distributions. The BLUE-combined errors are
smaller and their distribution is narrower than the distribution of the first combination
(solid red histogram).

pull distribution (blue histogram) is superimposed on the first combination (black
histogram).

The precision with which we are able to reconstruct masses was tested on all the
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Figure 10: Left: Pull distributions for 5000 PEs extracted from the mass template
M = 170 GeV and the combined BG sample. The first combination (black line) and
the BLUE-combined pull distribution (blue line) are superimposed. Right: input masses
versus output masses from the reconstruction obtained with BLUE. The fitting line has
a slope of 1.002± 0.005.

10 input masses examined. The BLUE-reconstructed masses as a function of the input
masses are shown in figure 10, right. The slope of the fitting line is reported in table 4,
together with the slopes relative to the first, second, third combination (section 3.1).

Combination Slope
1 1.009± 0.008
2 0.992± 0.006
3 1.007± 0.008

BLUE 1.002± 0.005

Table 4: The table compares the slopes of the three best combinations and the BLUE-
combined reconstructions. The BLUE slope is fully compatible with zero.

The pull distributions means and widths of the BLUE-combined masses are re-
ported, together with the first three combination ones, in figure 11. The blue horizontal
lines are the constant fits to the BLUE pull means and width points. The values of
those constants are reported in table 5 which report also the ones already given in table
3 for comparison. We notice that the fitting line to the BLUE pull means is compatible
with 0 and the constant line fitting the widths is compatible with 1.0.
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Figure 11: Pull distribution means and widths as a function of the generated top mass
for the three combinations and for the BLUE-combined measurements.

Combination pmean
0 pwidth

0

1 0.013± 0.032 1.008± 0.016
2 0.014± 0.031 0.989± 0.018
3 0.064± 0.030 0.944± 0.016

BLUE −0.027± 0.029 1.020± 0.010

Table 5: The table summarizes the values of the constant fits to the pull distributions
means and widths as a function of the MC input mass.

6 Sysematic uncertainties

To study systematics (as well as data), we need to decide which correlation factor
triplet ρ12, ρ13, ρ23 to use. As mentioned above, while the ρs are inferred from the PEs,
the α factors come from the experiment errors set combined with the ρ.

We have seen in figure 7 (left) how the ρij depend on the input mass. We studied
the impact of a wrong ρij assignement to a mass template. We first calculated the ρij
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triplets for the three masses 150, 170, 190 GeV , then we studied all the mass template
by imposing the ρ150

ij , ρ170
ij , ρ190

ij values in the BLUE calculation. The result is reported
in table 6.

Min GeV σ(ρ150) GeV σ(ρ170) GeV σ(ρ190) GeV
150 2.20 2.21 2.12
155 2.30 2.31 2.23
160 2.40 2.41 2.32
165 2.54 2.55 2.46
170 2.53 2.54 2.46
175 2.57 2.58 2.50
180 2.63 2.63 2.55
185 2.62 2.62 2.56
190 2.66 2.66 2.60
195 2.71 2.70 2.64

Table 6: The table shows the changing in the BLUE error by imposing to BLUE the ρ
tripletsappropriate for Mtop = 150, 170, 190 GeV .

The errors found are very close to each other (within less than 0.1 GeV ) when
changing the ρs. This proves that the ρ can be computed for a reference mass, and be
applied to all studies.

We conclude that the systematic uncertainties can be studied by means of a single
ρ triplet. We chose the triplet obtained from Mtop = 175 GeV which is: ρ12 = 0.352,
ρ13 = 0.271, ρ12 = 0.303.

7 Results

To test the BLUE performances on the top mass measurements for the prestag sample,
we produced for each of the 10 generated masses reported in section 2.2, 5K PEs. Each
PE has 235 tt̄ events randomly picked up from the MC template and 211 background
events randomly taken from the MC combined background sample.

For each combination (1,2,3) and for each input mass, the 5K PE were sequentially
fitted and BLUE-combined as described in sections 4 and secsec:comb. We obtained
for each input mass 4 distributions for the masses (3 best combinations + BLUE) and
4 distributions for their measurement errors. The mean of the Gaussian fits of those 8
distributions give for each mass four measurements. We are interested to compare the
first combination (the usual analysis procedure) with the BLUE-combined one. The
results are all reported in table 7 which also reports the percent improvement obtained
by applying this method.

We conclude that the tests on MC samples indicate that a significant improvement
can be obtained by applying BLUE. We evaluate in about 10% the improvement in
statistical error that is possible to obtain by applying BLUE to the L+J top mass
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Input mass (GeV/c2) Comb Mass (GeV/c2) σ (GeV/c2) Improvement (%)

150 1 150.14 2.51
2 150.40 3.13
3 150.38 3.78

BLUE 150.09 2.20 -13
155 1 154.69 2.66

2 155.40 3.17
3 155.12 4.11

BLUE 154.76 2.32 -13
160 1 159.44 2.76

2 160.54 3.30
3 160.66 4.31

BLUE 159.74 2.41 -12
165 1 164.97 2.94

2 165.30 3.45
3 166.08 4.68

BLUE 165.04 2.53 -14
170 1 170.37 2.86

2 169.80 3.57
3 170.11 4.73

BLUE 170.02 2.51 -12
175 1 175.29 2.87

2 174.62 3.68
3 175.23 5.01

BLUE 174.86 2.53 -12
180 1 180.40 2.86

2 179.97 3.90
3 181.43 5.36

BLUE 180.17 2.56 -10
185 1 185.20 2.82

2 184.89 3.97
3 185.73 5.46

BLUE 185.00 2.56 -9
190 1 189.75 2.86

2 189.75 4.02
3 189.95 5.70

BLUE 189.57 2.60 -9
195 1 195.39 2.89

2 195.66 4.14
3 195.94 5.93

BLUE 195.30 2.62 -9

Table 7: Results of measurements on pseudodata sets extracted from the mass templates
and the combined background sample. The measurements relative to the three best
combinations are compared with the combined BLUE measurement. The statistical
improvement in the error estimation is about 10%.

analysis. We also notice by studying the pull distribution means that the BLUE mass
measurements are in very good agreement with the input MC mass, as well as better
than the measurement we made by using the first combination only.

Finally, we observe that the BLUE method does not conflict with the JES technique
that was recently applied to the Top mass measurement. The two techniques applied
together could lead to additional progress.
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